WEYLS THEOREM FOR TENSOR PRODUCTS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Kleiman–beritini Theorem for Sheaf Tensor Products

Fix a variety X with a transitive (left) action by an algebraic group G. Let E and F be coherent sheaves on X . We prove that for elements g in a dense open subset of G, the sheaf TorXi (E , gF) vanishes for all i > 0. When E and F are structure sheaves of smooth subschemes of X in characteristic zero, this follows from the Kleiman–Bertini theorem; our result has no smoothness hypotheses or hyp...

متن کامل

A Kleiman–bertini Theorem for Sheaf Tensor Products

Fix a variety X with a transitive (left) action by an algebraic group G. Let E and F be coherent sheaves on X . We prove that for elements g in a dense open subset of G, the sheaf Tor i (E , gF) vanishes for all i > 0. When E and F are structure sheaves of smooth subschemes of X in characteristic zero, this follows from the Kleiman–Bertini theorem; our result has no smoothness hypotheses on the...

متن کامل

Weyl ’ S Theorem and Tensor Products : a Counterexample Derek Kitson ,

Approximately fifty percent of Weyl’s theorem fails to transfer from Hilbert space operators to their tensor product. As a biproduct we find that the product of circles in the complex plane is a limaçon. 0. Introduction To say that “Weyl’s theorem holds”, for a bounded operator T ∈ B(X) on a Banach space X , is to assert [2],[4],[5] that 0.1 σ(T ) \ ωess(T ) = π 00 (T ) ≡ iso σ(T )∩π 0 (T ) : t...

متن کامل

bivariations and tensor products

the ordinary tensor product of modules is defined using bilinear maps (bimorphisms), that are linear in eachcomponent. keeping this in mind, linton and banaschewski with nelson defined and studied the tensor product in an equational category and in a general (concrete) category k, respectively, using bimorphisms, that is, defined via the hom-functor on k. also, the so-called sesquilinear, or on...

متن کامل

Tensor Products

Let R be a commutative ring and M and N be R-modules. (We always work with rings having a multiplicative identity and modules are assumed to be unital: 1 ·m = m for all m ∈M .) The direct sum M ⊕N is an addition operation on modules. We introduce here a product operation M ⊗RN , called the tensor product. We will start off by describing what a tensor product of modules is supposed to look like....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2004

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089504001776